jueves, 17 de junio de 2010

elementos de hardaware en una red

COMPONENTES DE UNA RED
Una red de computadoras esta conectada tanto por hardware como por software. El hardware incluye tanto las tarjetas de interfaz de red como los cables que las unen, y el software incluye los controladores (programas que se utilizan para gestionar los dispositivos y el sistema operativo de red que gestiona la red. A continuación se listan los componentes:
- Servidor.
- Estaciones de trabajo.
- Placas de interfaz de red (NIC).
- Recursos periféricos y compartidos.

Componentes de una red
Servidor: este ejecuta el sistema operativo de red y ofrece los servicios de red a las estaciones de trabajo.
Estaciones de Trabajo: Cuando una computadora se conecta a una red, la primera se convierte en un nodo de la ultima y se puede tratar como una estación de trabajo o cliente.
Las estaciones de trabajos pueden ser computadoras personales con el DOS, Macintosh, Unix, OS/2 o estaciones de trabajos sin discos.
Tarjetas o Placas de Interfaz de Red: Toda computadora que se conecta a una red necesita de una tarjeta de interfaz de red que soporte un esquema de red especifico, como Ethernet, ArcNet o Token Ring. El cable de red se conectara a la parte trasera de la tarjeta.
Sistema de Cableado: El sistema de la red esta constituido por el cable utilizado para conectar entre si el servidor y las estaciones de trabajo.
Recursos y Periféricos Compartidos: Entre los recursos compartidos se incluyen los dispositivos de almacenamiento ligados al servidor, las unidades de discos ópticos, las impresoras, los trazadores y el resto de equipos que puedan ser utilizados por cualquiera en la red.

lenguaje de programacion

Un lenguaje de programación es un idioma artificial diseñado para expresar computaciones que pueden ser llevadas a cabo por máquinas como las computadoras. Pueden usarse para crear programas que controlen el comportamiento físico y lógico de una máquina, para expresar algoritmos con precisión, o como modo de comunicación humana.[1] Está formado de un conjunto de símbolos y reglas sintácticas y semánticas que definen su estructura y el significado de sus elementos y expresiones. Al proceso por el cual se escribe, se prueba, se depura, se compila y se mantiene el código fuente de un programa informático se le llama programación.
También la palabra programación se define como el proceso de creación de un
programa de computadora, mediante la aplicación de procedimientos lógicos, a través de los siguientes pasos:
El desarrollo lógico del programa para resolver un problema en particular.
Escritura de la lógica del programa empleando un lenguaje de programación específico (codificación del programa)
Ensamblaje o compilación del programa hasta convertirlo en lenguaje de máquina.
Prueba y depuración del programa.
Desarrollo de la documentación.
Existe un error común que trata por sinónimos los términos 'lenguaje de programación' y '
lenguaje informático'. Los lenguajes informáticos engloban a los lenguajes de programación y a otros más, como por ejemplo el HTML. (lenguaje para el marcado de páginas web que no es propiamente un lenguaje de programación sino un conjunto de instrucciones que permiten diseñar el contenido y el texto de los documentos)
Permite especificar de manera precisa sobre qué datos debe operar una computadora, cómo deben ser almacenados o transmitidos y qué acciones debe tomar bajo una variada gama de circunstancias. Todo esto, a través de un
lenguaje que intenta estar relativamente próximo al lenguaje humano o natural, tal como sucede con el lenguaje Léxico. Una característica relevante de los lenguajes de programación es precisamente que más de un programador pueda usar un conjunto común de instrucciones que sean comprendidas entre ellos para realizar la construcción del programa de forma colaborativa

tipos de cables

Principales tipos de cables
Actualmente, la gran mayoría de las redes están conectadas por algún tipo de cableado, que actúa como medio de transmisión por donde pasan las señales entre los equipos. Hay disponibles una gran cantidad de tipos de cables para cubrir las necesidades y tamaños de las diferentes redes, desde las más pequeñas a las más grandes.
Existe una gran cantidad de tipos de cables. Algunos fabricantes de cables publican un catálogos con más de 2.000 tipos diferentes que se pueden agrupar en tres grupos principales que conectan la mayoría de las redes:
Cable coaxial.
Cable de par trenzado (apantallado y no apantallado).
Cable de fibra óptica.
Cable coaxial
Hubo un tiempo donde el cable coaxial fue el más utilizado. Existían dos importantes razones para la utilización de este cable: era relativamente barato, y era ligero, flexible y sencillo de manejar.
Un cable coaxial consta de un núcleo de hilo de cobre rodeado por un aislante, un apantallamiento de metal trenzado y una cubierta externa.
El término apantallamiento hace referencia al trenzado o malla de metal (u otro material) que rodea algunos tipos de cable. El apantallamiento protege los datos transmitidos absorbiendo las señales electrónicas espúreas, llamadas ruido, de forma que no pasan por el cable y no distorsionan los datos. Al cable que contiene una lámina aislante y una capa de apantallamiento de metal trenzado se le denomina cable apantallado doble. Para entornos que están sometidos a grandes interferencias, se encuentra disponible un apantallamiento cuádruple. Este apantallamiento consta de dos láminas aislantes, y dos capas de apantallamiento de metal trenzado,
El núcleo de un cable coaxial transporta señales electrónicas que forman los datos. Este núcleo puede ser sólido o de hilos. Si el núcleo es sólido, normalmente es de cobre.
Rodeando al núcleo hay una capa aislante dieléctrica que la separa de la malla de hilo. La malla de hilo trenzada actúa como masa, y protege al núcleo del ruido eléctrico y de la intermodulación (la intermodulación es la señal que sale de un hilo adyacente).
El núcleo de conducción y la malla de hilos deben estar separados uno del otro. Si llegaran a tocarse, el cable experimentaría un cortocircuito, y el ruido o las señales que se encuentren perdidas en la malla circularían por el hilo de cobre. Un cortocircuito eléctrico ocurre cuando dos hilos de conducción o un hilo y una tierra se ponen en contacto. Este contacto causa un flujo directo de corriente (o datos) en un camino no deseado. En el caso de una instalación eléctrica común, un cortocircuito causará el chispazo y el fundido de un fusible o del interruptor automático. Con dispositivos electrónicos que utilizan bajos voltajes, el resultado no es tan dramático, y a menudo casi no se detecta. Estos cortocircuitos de bajo voltaje generalmente causan un fallo en el dispositivo y lo habitual es que se pierdan los datos.
Una cubierta exterior no conductora (normalmente hecha de goma, Teflón o plástico) rodea todo el cable.
El cable coaxial es más resistente a interferencias y atenuación que el cable de par trenzado.
La malla de hilos protectora absorbe las señales electrónicas perdidas, de forma que no afecten a los datos que se envían a través del cable de cobre interno. Por esta razón, el cable coaxial es una buena opción para grandes distancias y para soportar de forma fiable grandes cantidades de datos con un equipamiento poco sofisticado.
Tipos de cable coaxial
Hay dos tipos de cable coaxial:
Cable fino (Thinnet).
Cable grueso (Thicknet).
El tipo de cable coaxial más apropiado depende de 1as necesidades de la red en particular.
Cable Thinnet (Ethernet fino). El cable Thinnet es un cable coaxial flexible de unos 0,64 centímetros de grueso (0,25 pulgadas). Este tipo de cable se puede utilizar para la mayoría de los tipos de instalaciones de redes, ya que es un cable flexible y fácil de manejar.
El cable coaxial Thinnet puede transportar una señal hasta una distancia aproximada de 185 metros (unos 607 pies) antes de que la señal comience a sufrir atenuación.
Los fabricantes de cables han acordado denominaciones específicas para los diferentes tipos de cables. El cable Thinnet está incluido en un grupo que se denomina la familia RG-58 y tiene una impedancia de 50 ohm. (La impedancia es la resistencia, medida en ohmios, a la corriente alterna que circula en un hilo.)
La característica principal de la familia RG-58 es el núcleo central de cobre y los diferentes tipos de cable de esta familia son:
RG-58/U: Núcleo de cobre sólido.
RG-58 A/U: Núcleo de hilos trenzados.
RG-58 C/U: Especificación militar de RG-58 A/U.
RG-59: Transmisión en banda ancha, como el cable de televisión.
RG-60: Mayor diámetro y considerado para frecuencias más altas que RG-59, pero también utilizado para transmisiones de banda ancha.
RG-62: Redes ARCnet.
Cable Thicknet (Ethernet grueso). El cable Thicknet es un cable coaxial relativamente rígido de aproximadamente 1,27 centímetros de diámetro. Al cable Thicknet a veces se le denomina Ethernet estándar debido a que fue el primer tipo de cable utilizado con la conocida arquitectura de red Ethernet. El núcleo de cobre del cable Thicknet es más grueso que el del cable Thinnet.
Cuanto mayor sea el grosor del núcleo de cobre, más lejos puede transportar las señales. El cable Thicknet puede llevar una señal a 500 metros. Por tanto, debido a la capacidad de Thicknet para poder soportar transferencia de datos a distancias mayores, a veces se utiliza como enlace central o backbone para conectar varias redes más pequeñas basadas en Thinnet.
Un transceiver conecta el cable coaxial Thinnet a un cable coaxial Thicknet mayor. Un transceiver diseñado para Ethernet Thicknet incluye un conector conocido como «vampiro» o «perforador» para establecer la conexión física real con el núcleo Thicknet. Este conector se abre paso por la capa aislante y se pone en contacto directo con el núcleo de conducción. La conexión desde el transceiver a la tarjeta de red se realiza utilizando un cable de transceiver para conectar el conector del puerto de la interfaz de conexión de unidad (AUI) a la tarjeta. Un conector de puerto AUI para Thicknet también recibe el nombre de conector Digital Intel Xerox (DIX) (nombre dado por las tres compañías que lo desarrollaron y sus estándares relacionados) o como conector dB-15.
Cable Thinnet frente a Thicknet. Como regla general, los cables más gruesos son más difíciles de manejar. El cable fino es flexible, fácil de instalar y relativamente barato. El cable grueso no se dobla fácilmente y, por tanto, es más complicado de instalar. Éste es un factor importante cuando una instalación necesita llevar el cable a través de espacios estrechos, como conductos y canales.
El cable grueso es más caro que el cable fino, pero transporta la señal más lejos.
Hardware de conexión del cable coaxial
Tanto el cable Thinnet como el Thicknet utilizan un componente de conexión llamado conector BNC, para realizar las conexiones entre el cable y los equipos. Existen varios componentes importantes en la familia BNC, incluyendo los siguientes:
El conector de cable BNC. El conector de cable BNC está soldado, o incrustado, en el extremo de un cable.
El conector BNC T. Este conector conecta la tarjeta de red (NIC) del equipo con el cable de la red.
Conector acoplador (barrel) BNC. Este conector se utiliza para unir dos cables Thinnet para obtener uno de mayor longitud.
Terminador BNC. El terminador BNC cierra el extremo del cable del bus para absorber las señales perdidas.
El origen de las siglas BNC no está claro, y se le han atribuido muchos nombres, desde «British Naval Connector» a «Bayonet Neill-Councelman». Haremos referencia a esta familia hardware simplemente como BNC, debido a que no hay consenso en el nombre apropiado y a que en la industria de la tecnología las referencias se hacen simplemente como conectores del tipo BNC.
Tipos de cable coaxial y normas de incendios
El tipo de cable que se debe utilizar depende del lugar donde se vayan a colocar los cables en la oficina. Los cables coaxiales pueden ser de dos tipos:
Cloruro de polivinilo (PVC).
Plenum.
El cloruro de polivinilo (PVC) es un tipo de plástico utilizado para construir el aíslante y la clavija del cable en la mayoría de los tipos de cable coaxial. El cable coaxial de PVC es flexible y se puede instalar fácilmente a través de la superficie de una oficina. Sin embargo, cuando se quema, desprende gases tóxicos.
Un plenum. Es el espacio muerto que hay en muchas construcciones entre el falso techo y el piso de arriba; se utiliza para que circule aire frío y caliente a través del edificio. Las normas de incendios indican instrucciones muy específicas sobre el tipo de cableado que se puede mandar a través de esta zona, debido a que cualquier humo o gas en el plenum puede mezclarse con el aire que se respira en el edificio.
El cableado de tipo plenum contiene materiales especiales en su aislamiento y en 1a clavija del cable. Estos materiales están certificados como resistentes al fuego y producen una mínima cantidad de humo; esto reduce los humos químicos tóxicos. El cable plenum se puede utilizar en espacios plenum y en sitios verticales (en una pared, por ejemplo) sin conductos. Sin embargo, el cableado plenum es más caro y menos flexible que el PVC.
Para instalar el cable de red en la oficina sería necesario consultar las normas de la zona sobre electricidad y fuego para la regulación y requerimientos específicos.
Consideraciones sobre el cable coaxial
En la actualidad es difícil que tenga que tomar una decisión sobre cable coaxial, no obstante, considere las siguientes características del cable coaxial.
Utilice el cable coaxial si necesita un medio que pueda:
Transmitir voz, vídeo y datos.
Transmitir datos a distancias mayores de lo que es posible con un cableado menos caro
Ofrecer una tecnología familiar con una seguridad de los datos aceptable.
Cable de par trenzado
En su forma más simple, un cable de par trenzado consta de dos hilos de cobre aislados y entrelazados. Hay dos tipos de cables de par trenzado: cable de par trenzado sin apantallar (UTP) y par trenzado apantallado (STP).
A menudo se agrupan una serie de hilos de par trenzado y se encierran en un revestimiento protector para formar un cable. El número total de pares que hay en un cable puede variar. El trenzado elimina el ruido eléctrico de los pares adyacentes y de otras fuentes como motores, relés y transformadores.
Cable de par trenzado sin apantallar (UTP)
El UTP, con la especificación 10BaseT, es el tipo más conocido de cable de par trenzado y ha sido el cableado LAN más utilizado en los últimos años. El segmento máximo de longitud de cable es de 100 metros.
El cable UTP tradicional consta de dos hilos de cobre aislados. Las especificaciones UTP dictan el número de entrelazados permitidos por pie de cable; el número de entrelazados depende del objetivo con el que se instale el cable.
La especificación 568A Commercial Building Wiring Standard de la Asociación de Industrias Electrónicas e Industrias de la Telecomunicación (EIA/TIA) especifica el tipo de cable UTP que se va a utilizar en una gran variedad de situaciones y construcciones. El objetivo es asegurar la coherencia de los productos para los clientes. Estos estándares definen cinco categorías de UTP:
Categoría 1. Hace referencia al cable telefónico UTP tradicional que resulta adecuado para transmitir voz, pero no datos. La mayoría de los cables telefónicos instalados antes de 1983 eran cables de Categoría 1.
Categoría 2. Esta categoría certifica el cable UTP para transmisión de datos de hasta 4 megabits por segundo (mbps), Este cable consta de cuatro pares trenzados de hilo de cobre.
Categoría 3. Esta categoría certifica el cable UTP para transmisión de datos de hasta 16 mbps. Este cable consta de cuatro pares trenzados de hilo de cobre con tres entrelazados por pie.
Categoría 4. Esta categoría certifica el cable UTP para transmisión de datos de hasta 20 mbps. Este cable consta de cuatro pares trenzados de hilo de cobre.
Categoría 5. Esta categoría certifica el cable UTP para transmisión de datos de hasta 100 mbps. Este cable consta de cuatro pares trenzados de hilo de cobre.
Categoría 5a. También conocida como Categoría 5+ ó Cat5e. Ofrece mejores prestaciones que el estándar de Categoría 5. Para ello se deben cumplir especificaciones tales como una atenuación al ratio crosstalk (ARC) de 10 dB a 155 Mhz y 4 pares para la comprobación del Power Sum NEXT. Este estándar todavía no está aprobado
Nivel 7. Proporciona al menos el doble de ancho de banda que la Categoría 5 y la capacidad de soportar Gigabit Ethernet a 100 m. El ARC mínimo de 10 dB debe alcanzarse a 200 Mhz y el cableado debe soportar pruebas de Power Sum NEXT, más estrictas que las de los cables de Categoría 5 Avanzada.
La mayoría de los sistemas telefónicos utilizan uno de los tipos de UTP. De hecho, una razón por la que UTP es tan conocido es debido a que muchas construcciones están preparadas para sistemas telefónicos de par trenzado. Como parte del proceso previo al cableado, se instala UTP extra para cumplir las necesidades de cableado futuro. Si el cable de par trenzado preinstalado es de un nivel suficiente para soportar la transmisión de datos, se puede utilizar para una red de equipos. Sin embargo, hay que tener mucho cuidado, porque el hilo telefónico común podría no tener entrelazados y otras características eléctricas necesarias para garantizar la seguridad y nítida transmisión de los datos del equipo.
La intermodulación es un problema posible que puede darse con todos los tipos de cableado (la intermodulación se define como aquellas señales de una línea que interfieren con las señales de otra línea.)
UTP es particularmente susceptible a la intermodulación, pero cuanto mayor sea el número de entrelazados por pie de cable, mayor será la protección contra las interferencias.
Cable de par trenzado apantallado (STP)
El cable STP utiliza una envoltura con cobre trenzado, más protectora y de mayor calidad que la usada en el cable UTP. STP también utiliza una lámina rodeando cada uno de los pares de hilos. Esto ofrece un excelente apantallamiento en los STP para proteger los datos transmitidos de intermodulaciones exteriores, lo que permite soportar mayores tasas de transmisión que los UTP a distancias mayores.
Componentes del cable de par trenzado
Aunque hayamos definido el cable de par trenzado por el número de hilos y su posibilidad de transmitir datos, son necesarios una serie de componentes adicionales para completar su instalación. Al igual que sucede con el cable telefónico, el cable de red de par trenzado necesita unos conectores y otro hardware para asegurar una correcta instalación.
Elementos de conexión
El cable de par trenzado utiliza conectores telefónicos RJ-45 para conectar a un equipo. Éstos son similares a los conectores telefónicas RJ11. Aunque los conectores RJ-11 y RJ-45 parezcan iguales a primera vista, hay diferencias importantes entre ellos.
El conector RJ-45 contiene ocho conexiones de cable, mientras que el RJ-11 sólo contiene cuatro.
Existe una serie de componentes que ayudan a organizar las grandes instalaciones UTP y a facilitar su manejo.
Armarios y racks de distribución. Los armarios y los racks de distribución pueden crear más sitio para los cables en aquellos lugares donde no hay mucho espacio libre en el suelo. Su uso ayuda a organizar una red que tiene muchas conexiones.
Paneles de conexiones ampliables. Existen diferentes versiones que admiten hasta 96 puertos y alcanzan velocidades de transmisión de hasta 100 Mbps.
Clavijas. Estas clavijas RJ-45 dobles o simples se conectan en paneles de conexiones y placas de pared y alcanzan velocidades de datos de hasta 100 Mbps.
Placas de pared. Éstas permiten dos o más enganches.
Consideraciones sobre el cableado de par trenzado
El cable de par trenzado se utiliza si:
La LAN tiene una limitación de presupuesto.
Se desea una instalación relativamente sencilla, donde las conexiones de los equipos sean simples.
No se utiliza el cable de par trenzado si:
La LAN necesita un gran nivel de seguridad y se debe estar absolutamente seguro de la integridad de los datos.
Los datos se deben transmitir a largas distancias y a altas velocidades.
Diferencia entre las Categorías de cable UTP.
El estándar TIA/EIA 568 especifica el cable le Categoría 5 como un medio para la transmisión de datos a frecuencias de hasta 100 MHz. El Modo de Transmisión Asíncrona (Asynchronous Transfer Mode ATM), trabaja a 155 MHz. La Gigabit Ethernet a 1 GHz.
La necesidad de incrementar el ancho de banda nunca cesa, cuanto más se tenga, más se necesita. Las aplicaciones cada vez se vuelven más complejas, y los ficheros cada vez son más grandes. A medida que su red se vaya congestionando con más datos, la velocidad se va relentizando y no volverá a ser rápida nunca más. Las buenas noticias son que la próxima generación de cableado está en marcha. Sin embargo, tendrá que tener cuidado con el cableado que esté instalado hoy, y asegurarse que cumplirá con sus necesidades futuras.
Categoría 5. La TIA/EIA 568A especifica solamente las Categorías para los cables de pares trenzados sin apantallar (UTP). Cada una se basa en la capacidad del cable para soportar prestaciones máximas y mínimas. Hasta hace poco, la Categoría 5 era el grado superior especificado por el estándar TIA/EIA. Se definió para ser capaz de soportar velocidades de red de hasta 100 Mbps en transmisiones de voz/datos a frecuencias de hasta100 MHz. Las designaciones de Categoría están determinadas por las prestaciones UTP. El cable de Categoría 5 a100 MHz, debe tener el NEXT de 32 dB/304,8 mts. y una gama de atenuación de 67dB/304,8 mts, Para cumplir con el estándar, los cables deben cumplir solamente las mínimos estipulados, Con cable de Categoría 5 debidamente instalado, podrá esperar alcanzar las máximas prestaciones, las cuales, de acuerdo con los estándares, alcanzarán la máxima velocidad de traspaso de Mbps,
Categoría 5a. La principal diferencia entre la Categoría 5 (568A) y Categoría 5a (568A-5) es que algunas de las especificaciones han sido realizadas de forma más estricta en la versión más avanzada. Ambas trabajan a frecuencias de 100 MHz. Pero la Categoría 5e cumple las siguientes especificaciones: NEXT: 35 dB; PS-NEXT: 32 dB, ELFEXT: 23.8 dB; PS-ELFEXT: 20.8 dB, Pérdida por Retorno: 20.1 dB, y Retardo: 45 ns, Con estas mejoras, podrá tener transmisiones Ethernet con 4 pares, sin problemas, full-duplex, sobre cable UTP. En el futuro, la mayoría de las instalaciones requerirán cableado de Categoría 5e así como sus componentes.
Categoría 6 y posteriores. Ahora ya puede obtener un cableado de Categoría 6, aunque el estándar no ha sido todavía creado. Pero los equipos de trabajo que realizan los estándares están trabajando en ello. La Categoría 6 espera soportar frecuencias de 250 MHz, dos veces y media más que la Categoría 5. En un futuro cercano, la TIA/EIA está estudiando el estándar para la
Categoría 7, para un ancho de banda de hasta 600 MHz. La Categoría 7, usará un nuevo y aún no determinado tipo de conector.
Cable de fibra óptica
En el cable de fibra óptica las señales que se transportan son señales digitales de datos en forma de pulsos modulados de luz. Esta es una forma relativamente segura de enviar datos debido a que, a diferencia de los cables de cobre que llevan los datos en forma de señales electrónicas, los cables de fibra óptica transportan impulsos no eléctricos. Esto significa que el cable de fibra óptica no se puede pinchar y sus datos no se pueden robar.
El cable de fibra óptica es apropiado para transmitir datos a velocidades muy altas y con grandes capacidades debido a la carencia de atenuación de la señal y a su pureza.
Composición del cable de fibra óptica
Una fibra óptica consta de un cilindro de vidrio extremadamente delgado, denominado núcleo, recubierto por una capa de vidrio concéntrica, conocida como revestimiento. Las fibras a veces son de plástico. El plástico es más fácil de instalar, pero no puede llevar los pulsos de luz a distancias tan grandes como el vidrio.
Debido a que los hilos de vidrio pasan las señales en una sola dirección, un cable consta de dos hilos en envolturas separadas. Un hilo transmite y el otro recibe. Una capa de plástico de refuerzo alrededor de cada hilo de vidrio y las fibras Kevlar ofrecen solidez. En el conector de fibra óptica, las fibras de Kevlar se colocan entre los dos cables. Al igual que sus homólogos (par trenzado y coaxial), los cables de fibra óptica se encierran en un revestimiento de plástico para su protección.
Las transmisiones del cable de fibra óptica no están sujetas a intermodulaciones eléctricas y son extremadamente rápidas, comúnmente transmiten a unos 100 Mbps, con velocidades demostradas de hasta 1 gigabit por segundo (Gbps). Pueden transportar una señal (el pulso de luz) varios kilómetros.
Consideraciones sobre el cable de fibra óptica
El cable de fibra óptica se utiliza si:
Necesita transmitir datos a velocidades muy altas y a grandes distancias en un medio muy seguro.
El cable de fibra óptica no se utiliza si:
Tiene un presupuesto limitado.
No tiene el suficiente conocimiento para instalar y conectar los dispositivos de forma apropiada.
El precio del cable de fibra óptica es competitivo con el precio del cable de cobre alto de gama. Cada vez se hace más sencilla la utilización del cable de fibra óptica, y las técnicas de pulido y terminación requieren menos conocimientos que hace unos años.
Transmisión de la señal
Se pueden utilizar dos técnicas para transmitir las señales codificadas a través de un cable: la transmisión en banda base y la transmisión en banda ancha.
Transmisión en banda base
Los sistemas en banda base utilizan señalización digital en un único canal. Las señales fluyen en forma de pulsos discretos de electricidad o luz. Con la transmisión en banda base, se utiliza la capacidad completa del canal de comunicación para transmitir una única señal de datos. La señal digital utiliza todo el ancho de banda del cable, constituyendo un solo canal. El término ancho de banda hace referencia a la capacidad de transferir datos, o a la velocidad de transmisión, de un sistema de comunicaciones digital, medido en bits por segundo (bps).
La señal viaja a lo largo del cable de red y, por tanto, gradualmente va disminuyendo su intensidad, y puede llegar a distorsionarse. Si la longitud del cable es demasiado larga, la señal recibida puede no ser reconocida o puede ser tergiversada.
Como medida de protección, los sistemas en banda base a veces utilizan repetidores para recibir las señales y retransmitirlas a su intensidad y definición original. Esto incrementa la longitud útil de un cable.
Transmisión en banda ancha
Los sistemas de banda ancha utilizan señalización analógica y un rango de frecuencias. Con la transmisión analógica, las señales son continuas y no discretas. Las señales circulan a través del medio físico en forma de ondas ópticas o electromagnéticas. Con la transmisión en banda ancha, el flujo de la señal es unidireccional.
Si el ancho de banda disponible es suficiente, varios sistemas de transmisión analógica, como la televisión por cable y transmisiones de redes, se pueden mantener simultáneamente en el mismo cable.
A cada sistema de transmisión se le asigna una parte del ancho de banda total. Todos los dispositivos asociados con un sistema de transmisión dado, por ejemplo, todas los equipos que utilicen un cable LAN, deben ser configuradas, de forma que sólo utilicen las frecuencias que están dentro del rango asignado.
Mientras que los sistemas de banda base utilizan repetidores, los sistemas de banda ancha utilizan amplificadores para regenerar las señales analógicas y su intensidad original.
En la transmisión en banda ancha, las señales circulan en una sola dirección, de forma que debe existir dos caminos para el flujo de datos para que una señal alcance todos los dispositivos. Hay dos formas comunes de realizar esto:
A través de una configuración de banda ancha con división del medio, el ancho de banda se divide en dos canales, cada uno usando una frecuencia o rango de frecuencias diferentes. Un canal transmite señales y el otro las recibe.
Configuración en banda ancha con doble cable, a cada dispositivo se unen dos cables. Un cable se utiliza para enviar y el otro para recibir

dispositivos fisicos que integran una red informatica

Medios
Los Medios, mejor conocido como HARDWARE, se designa en un sistema informático a los componentes físicos del sistema. Constituido por un conjunto de elementos mecánicos, magnéticos, ópticos, eléctricos y electrónicos que forman parte del sistema informático. "La función de estos componentes suele dividirse en tres categorías principales: entrada, salida y almacenamiento. Los componentes de esas categorías están conectados a través de un conjunto de cables o circuitos llamado bus con la unidad central de proceso (CPU) del ordenador, el microprocesador que controla la computadora y le proporciona capacidad de cálculo" .
a) Dispositivos de EntradaEstos dispositivos permiten al usuario del ordenador introducir datos, comandos y programas en la CPU. El dispositivo de entrada más común es un teclado similar al de las máquinas de escribir. La información introducida con el mismo, es transformada por el ordenador en modelos reconocibles. Otros dispositivos de entrada son los lápices ópticos, que transmiten información gráfica desde tabletas electrónicas hasta el ordenador; joysticks y el ratón o mouse, que convierte el movimiento físico en movimiento dentro de una pantalla de ordenador; los escáneres luminosos, que leen palabras o símbolos de una página impresa y los traducen a configuraciones electrónicas que el ordenador puede manipular y almacenar; y los módulos de reconocimiento de voz, que convierten la palabra hablada en señales digitales comprensibles para el ordenador. También es posible utilizar los dispositivos de almacenamiento para introducir datos en la unidad de proceso.El Teclado.- Es el dispositivo estándar de entrada de datos del computador, mediante el cual se ingresan datos u ordenes, esta conectado directamente a la CPU.Ratón o Mouse.- Sirve para moverse sobre la pantalla rápidamente y ejecutar acciones .
b) Unidades de Salida
La Pantalla.- Es el dispositivo estándar de salida del computador, en el cual se presentan las respuestas del computador y los resultados de un proceso. También muestra la información ingresada mediante el teclado; se le denomina también monitor. Las características son similares a las de una pantalla de televisión. existen monitores monocromáticos (en blanco y negro) y a color. Las imágenes están formadas por puntos llamados píxeles. La nitidez y la calidad de la imagen depende de la cantidad de píxeles que maneja la pantalla, o sea la resolución. La pantalla se conecta a la tarjeta controladora de video ubicada en la CPU.Impresora.- Es el dispositivo de salida mas utilizado. Una impresora imprime series de caracteres, líneas o páginas con base en la información que le envía la CPU a través de un puerto (generalmente paralelo).
Si imprime caracter por caracter se denomina impresora de matriz de puntos. Generalmente utiliza 9 o 24 puntos para imprimir cada caracter.Si imprime renglón por renglón se denomina impresora de líneas. Son mas veloces que las de matriz de puntos ya que imprimen una linea de puntos a la vez. Pueden ser de impacto o de chorro de tinta (inkjet), si en lugar de golpear el papel con una cinta entintada la impresora dispara chorros microscópico de tinta que dibujan los caracteres o gráficos sobre el papel. La resolución se mide en puntos por pulgada (dpi:dot per inch), siendo las mas comunes las de 300 dpi y 600 dpi.Existe otra tecnología basada en rayo láser, mas costosa y sofisticada, que imprime páginas completas similar a las fotocopiadoras, con mayor velocidad y resolución que las impresoras de chorro de tinta, llamadas impresoras láser

red de estrella


red de bus


RED DE

Cuáles son las distintas topologías de una red de área local (LAN)
Cuando se ha determinado realizar una red, lo que se debe tener en cuenta es la estructura que va a hacer utilizada, o sea la distribución física de los equipos conectados. Para ello se utilizan las siguientes topologías: BUS, ESTRELLA Y ANILLO.
Red Anillo.
En ésta, las computadoras se conectan en un circuito cerrado formando un anillo por donde circula la información en una sola dirección, con esta característica permite tener un control de recepción de mensajes, pero si el anillo se corta los mensajes se pierden.Cuáles son las distintas topologías de una red de área local (LAN)
Cuando se ha determinado realizar una red, lo que se debe tener en cuenta es la estructura que va a hacer utilizada, o sea la distribución física de los equipos conectados. Para ello se utilizan las siguientes topologías: BUS, ESTRELLA Y ANILLO.
Red Anillo.
En ésta, las computadoras se conectan en un circuito cerrado formando un anillo por donde circula la información en una sola dirección, con esta característica permite tener un control de recepción de mensajes, pero si el anillo se corta los mensajes se pierden.

CLASIFICACION DE REDES

CLASIFICACION DE LAS REDES

¿Cómo se clasifican las redes?
Las redes de computadoras se clasifican por su tamaño, es decir la extensión física en que se ubican sus componentes, desde un aula hasta una ciudad, un país o incluso el planeta.
Dicha clasificación determinará los medios físicos y protocolos requeridos para su operación, por ello se han definido tres tipos:
Redes de Area Amplia o WAN (Wide Area Network):
Esta cubre áreas de trabajo dispersas en un país o varios países o continentes. Para lograr esto se necesitan distintos tipos de medios: satélites, cables interoceánicos, radio, etc.. Así como la infraestructura telefónica de larga distancias existen en ciudades y países, tanto de carácter público como privado.
Redes de Area Metropolitana o MAN (Metropolitan Area Network):
Tiene cubrimiento en ciudades enteras o partes de las mismas. Su uso se encuentra concentrado en entidades de servicios públicos como bancos.
Redes de Area Local o LAN (Local Area Network):
Permiten la interconexión desde unas pocas hasta miles de computadoras en la misma área de trabajo como por ejemplo un edificio. Son las redes más pequeñas que abarcan de unos pocos metros a unos pocos kilómetros.
¿Cómo es el funcionamiento de una red de área local?
Este es un conjunto de computadoras ubicadas en un edificio o lugar cercano, además consta de servidores, estaciones de trabajo, cables y tarjetas de red, también de programas de computación instalados en los equipos inteligentes.
Esta red permite la comunicación de las estaciones de trabajo entre sí y el Servidor (y los recursos asociados a él); para dicho fin se utiliza un sistema operativo de red que se encarga de la administración de los recursos como así también la seguridad y control de acceso al sistema interactuando con el sistema operacional de las estaciones de trabajo.
El usuario hace una petición a una aplicación específica desde el sistema operacional de la estación de trabajo, y si este a necesitar un recurso de la red transfiere control al software de la red.
La conexión de las computadoras y dispositivos de la red, se hace generalmente con cables de par trenzado o coaxial pudiendo obtener velocidades de transmisión entre 1, 10 y 100 Mb (megabit, no confundir con megabyte) por segundo.